The trapping of different conformations of the Escherichia coli F1 ATPase by disulfide bond formation. Effect on nucleotide binding affinities of the catalytic sites.
نویسندگان
چکیده
Two mutants of the Escherichia coli F1 ATPase, betaY331W:E381C/epsilonS108C and alphaS411C/betaY331W/epsilonS108C, have been used to relate nucleotide binding in catalytic sites with different interactions of the stalk-forming subunits gamma and epsilon at the alpha3beta3 subunit domain. Essentially full yield cross-linking between beta + gamma and beta + epsilon, or between alpha + gamma and alpha + epsilon, was obtained in these mutants by Cu2+-induced disulfide bond formation, thereby trapping the enzyme in states with the small subunits interacting either with beta or alpha subunits. The presence of the Trp for beta Tyr-331 in both mutants allowed direct measurement of nucleotide occupancy of catalytic sites. Before cross-linking, Mg2+ATP could be bound in all three catalytic sites in both mutants with a Kd of around 0.1 microM for the highest affinity site and Kd values of approximately 2 microM and 30-40 microM for the second and third sites, respectively. In the absence of Mg2+, ATP also bound in all three catalytic sites but with a single low affinity (above 100 microM) in both mutants. Cu2+-induced cross-linking of ECF1 from the mutant betaY331W:E381C/epsilonS108C had very little effect on nucleotide binding. The binding affinities of the three catalytic sites for Mg2+ATP were not significantly altered from those obtained before cross-linking, and the enzyme still switched between cooperative binding and equal binding affinities of the three catalytic sites (when Mg2+ was absent). When the gamma and epsilon subunits were cross-linked to alpha subunits, ATP binding in the highest affinity catalytic site was dramatically altered. This site became closed so that nucleotide (ATP or ADP) that had been bound into it prior to cross-linking was trapped and could not exchange out. Also, ATP or ADP could not enter this site, although empty, once the enzyme had been cross-linked. Finally, cross-linking of the gamma and epsilon to the alpha subunits prevented the switching between cooperative binding and the state where the three catalytic sites are equivalent. We argue that the conformation of the enzyme in which the small subunits are at alpha subunits occurs during functioning of the enzyme in the course of the rotation of gamma and epsilon subunits within the alpha3beta3 hexamer and that this may be the activated state for ATP synthesis.
منابع مشابه
Effects of the inhibitors azide, dicyclohexylcarbodiimide, and aurovertin on nucleotide binding to the three F1-ATPase catalytic sites measured using specific tryptophan probes.
Equilibrium nucleotide binding to the three catalytic sites of Escherichia coli F1-ATPase was measured in the presence of the inhibitors azide, dicyclohexylcarbodiimide, and aurovertin to elucidate mechanisms of inhibition. Fluorescence signals of beta-Trp-331 and beta-Trp-148 substituted in catalytic sites were used to determine nucleotide binding parameters. Azide brought about small decrease...
متن کاملStudies of nucleotide binding to the catalytic sites of Escherichia coli betaY331W-F1-ATPase using fluorescence quenching.
Most studies of nucleotide binding to catalytic sites of Escherichia coli betaY331W-F(1)-ATPase by the quenching of the betaY331W fluorescence have been conducted in the presence of approximately 20 mM sulfate. We find that, in the absence of sulfate, the nucleotide concentration dependence of fluorescence quenching induced by ADP, ATP, and MgADP is biphasic, revealing two classes of binding si...
متن کاملProperties of F1-ATPase from the uncD412 mutant of Escherichia coli.
Properties of purified F1-ATPase from Escherichia coli mutant strain AN484 (uncD412) have been studied in an attempt to understand why the amino acid substitution in the beta-subunit of this enzyme causes a tenfold reduction from normal MgATP hydrolysis rate. In most properties that were studied, uncD412 F1-ATPase resembled normal E. coli F1-ATPase. Both enzymes were found to contain a total of...
متن کاملThe structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B.
In the structure of bovine mitochondrial F1-ATPase that was previously determined with crystals grown in the presence of adenylyl-imidodiphosphate (AMP-PNP) and ADP, the three catalytic beta-subunits have different conformations and nucleotide occupancies. Adenylyl-imidodiphosphate is bound to one beta-subunit (betaTP), ADP is bound to the second (betaDP), and no nucleotide is bound to the thir...
متن کاملIdentification of the betaTP site in the x-ray structure of F1-ATPase as the high-affinity catalytic site.
ATP synthase uses a unique rotary mechanism to couple ATP synthesis and hydrolysis to transmembrane proton translocation. The F(1) subcomplex has three catalytic nucleotide binding sites, one on each beta subunit, with widely differing affinities for MgATP or MgADP. During rotational catalysis, the sites switch their affinities. The affinity of each site is determined by the position of the cen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 271 51 شماره
صفحات -
تاریخ انتشار 1996